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Foreword

In 1978, the European Mechanics Committee and the French Centre
National de la Recherche Scientifique agreed to the organization of an Interna-
tional Colloquium on the “Mechanical Behavior of Anisotropic Solids”. The
meeting was held at Villard-de-Lans (near Grenoble, France) from 19th to 22 nd
June 1979.

The Colloquium considered mechanical aspects of the anisotropy of solids,
both initial and induced by permanent deformation, anisotropic hardening and
damage, oriented fissuration, etc. Topics concerned mathematical, experimental
and engineering aspects of the anisotropy of metals, composites, soils and rocks.
The aim of the Colloquium was to bring together experimentalists, theoretecians
and engineers interested in various features of mechanical anisotropy, in order
to permit an interdisciplinary exchange of understanding, experience and
methods. A detailed description of the scope, aim and proposed topics is
contained in the Preface.

The announcement of the Colloquium attracted a large number of sub-
mitted contributions. Conforming with the principles of Euromech Colloquia
and of the Colloques Internationaux du CNRS, the accepted contributions
were limited to 50 communications.

A general description of the scientific program is to be found in the
Preface. Five general lectures gave state-of-the-art reports concerning some areas
of the behavior of anisotropic solids ; the 50 communications were divided into
12 sessions dealing with specific topics (see “Contents™). In order to facilitate
subsequent contact between the reader and the contributors, full addresses are
given in the “List of Authors”.

A conference room, meais and accommodation were provided at the
“Grand Hotel de Paris” in Villard-de-Lans, a small and pleasant holiday resort
in the Alps. This arrangement encouraged personal contact between the parti-
cipants after the sessions. Throughout the day, informal discussions were held in
the various hotel suites.

We would like to express our thanks to the 84 participants representing
15 different countries. If the Colloquium was successful in achieving its aims,
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it is due to their common efforts. Special thanks are owed to Dr. BIGUENET
for his constant and valuable assistance in resolving technical problems, and
a word of appreciation to the two interpreters from Grenoble for their cons-
cientious preparation and efficient services throughout the Colloquium.

A meeting such as this can only be organized if fipancial assistance is
guaranteed. We are therefore indebted to our sponsors. Major support was
provided by the CNRS. A grant from the DRET (Ministére de la Défense)
financed the simultaneous translation services. Additional funds were granted
by the French ‘‘Association Universitaire de Mécanique” and the ‘“Conseil
Général de I'Isére”.

Finally, we are grateful to the “Editions Scientifiques du CNRS”, which
financed the publication of this volume of the Proceedings and to the “Impri-
merie Louis-Jean” for its excellent job in printing the texts.

Jean-Paul BOEHLER



Avant-propos

En 1978, le Centre National de la Recherche Scientifique et le Comité
Européen de Mécanique ont agréé l'organisation d’un Colloque International
sur le “Comportement Mécanique des Solides Anisotropes”. Cette rencontre
S’est tenue a Villard-de-Lans du 19 au 22 juin 1979.

Le Colloque était spécialisé dans les aspects mécaniques de l'anisotropie
des solides, aussi bien l'anisotropie initiale, que l'anisotropie induite par les
déformations irréversibles, l'écrouissage et l'endommagement anisotropes, la
fissuration orientée, etc. Les thémes proposés concernaient les aspects mathé-
matiques, expérimentaux et appliqués de lanisotropie des métaux, des maté-
riaux composites, des sols et des roches. Le but du Colloque était de réunir
des expérimentateurs, des théoriciens et des ingénieurs s’intéressant aux diffé-
rentes caractéristiques de l'anisotropie mécanique, afin de permettre un échange
interdisciplinaire de conception, d’expérience et de méthode. Une description
détaillée du domaine, du but et des thémes proposés est incluse dans la Préface.

L’annonce du Colloque a attiré un grand nombre de propositions de
contributions. Conformément aux principes des Colloques Internationaux du
CNRS et des Colloques Euromech, les contributions acceptées ont été limitées
a 50 communications.

Une description générale du programme scientifique est présentée dans
la Préface. Cing conférences générales ont permis de donner l'état actuel des
connaissances dans certains domaines du comportement des solides anisotropes ;
les 50 communications ont été regroupées en 12 sessions spécialisées, traitant de
themes spécifiques (voir “Sommaire”). Afin de faciliter les contacts ultérieurs
entre le lecteur et les auteurs, les adresses complétes sont données dans la “‘Liste
des Auteurs”.

La salle de conférences, les repas et les logements ont été fournis par le
“Grand Hotel de Paris” a Villard-de-Lans, une agréable petite station de va-
cances dans les Alpes. Cet arrangement a stimulé les contacts personnels entre
les participants apres les sessions. Tout au long des journées, des discussions
libres se sont tenues dans les différents salons de I'hétel,
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Nous exprimons nos remerciements aux 84 participants, représentant
15 pays différents. Si le Colloque a réussi a atteindre ses buts, ¢’est grice d leurs
efforts communs. Nous remercions particuliérement M. BIGUENET pour son
aide constante et appréciable dans la résolution des problemes techniques, ainsi
que les deux interprétes de Grenoble pour leur préparation consciencieuse et
leurs services efficaces tout au long du Colloque.

Une telle rencontre ne peut étre organisée que si une aide financiére est
assurée. C’est pourquoi nous sommes redevables a différents organismes pour
avoir bien voulu parrainer ce projet. La contribution financiére principale a
été fournie par le CNRS. Un contrat de la DRET (Ministére de la Défense) a
permis de financer les services de traduction simultanée. Des contributions
complémentaires ont été accordées par I’Association Universitaire de Mécanique
et le Conseil Général de llsere.

Finalement, nous sommes reconnaissants aux ‘“Editions Scientifiques du
CNRS”, qui ont financé la publication de ce volume des Actes, et a I’‘Impri-
merie Louis-Jean” pour son excellent travail de composition et d’impression
des textes.

Jean-Paul BOEHLER



Preface

On the Mechanical Behavior
of Anisotropic Solids

The anisotropic properties of materials play an important role in numerous
branches of Physics, Geology, Mechanics of Solids and Engineering. Situations
commonly exist where oriented internal structures impart a directional character
to the mechanical response of the material. Thus, the constitutive relations have
to account for the fact that the material behavior is not invariant under arbi-
trary orthogonal transformations. A proper understanding, a rational descrip-
tion and adequate measurement of the anisotropic response of a material to
mechanical, thermal, electrical or other agencies are vital in many areas of
technology, engineering and biomechanics. For example, appropriate forming
processes are needed in materials sciences to ensure suitable mechanical proper-
ties in composites or alloys ; proper methods must be defined to assess the
carrying capacity of an oriented subsoil for an engineering structure ; suitable
techniques must be proposed to evaluate the directional properties of alloys,
composites, wood, rocks and living tissues.

This Colloquim at Villard-de-Lans in June 1979 focused specifically on
the mechanical behavior of anisotropic solids, in particular on the variation
of material properties, such as deformability and strength, according to the
orientation of external agencies. It was therefore concerned with many pro-
blems that must be solved in engineering mechanics, in order to satisfy the
multiple demands of our contemporary society. In an attempt to cover such
a wide field of responsibilities, a suitable approach is to define a limited number
of specific tasks.

In the first place, it is necessary to test, evaluate and describe in a mathe-
matically objective manner the mechanical properties of anisotropic materials.
The second task is to synthesize the material behavior into appropriate mathe-
matical problems, which, as far as possible, must take into account the various
couplings between the particular anisotropies, e.g. in the elastic, plastic, damage
and failure domains, and their evolution during permanent deformation. To be
useful, the model must be mathematically correct and sufficiently manageable
to allow for applications. Once a model is proposed and justified, the question
isythen to,develop,suitable,;methods,to, solve boundary and initial valued pro-



blems from the usual systems of differential equations. The final task of the
engineer is to solve specific problems concerning deformability, fissuration and
failure, should he intend to put the devised technological processes into practice
or to execute an engineering work.

Our Colloquium in such a scheme is focused primarily on aspects of model
building within an objective framework. Mechanical anisotropy is the main
concern, both initial anisotropy due to material formation or manufacturing,
and induced anisotropy due to deformation, fissuration and polarisation of ini-
tially isotropic or anisotropic solids. This is considered, bearing in mind the
significance of the directional properties of solids in metallurgy, engineering
mechanics, naval engineering, aeronautics, geology, the development of compo-
site or laminated materials, tunnel or storage zones in stratified rocks, the pre-
vention of avalanches, seismology engineering, as well as in many other fields
of materials sciences and engineering.

The evaluation of anisotropic properties and the devising of appropriate
mathematical models of mechanical behavior require suitable objective methods
to study general nonlinear and coupled phenomena in deformation and induced
anisotropy. Considerable knowledge has already been accumulated in various
branches of engineering, both in university centers and in specific industries.
It appears, however, that theoretical developments are often based on mathe-
matical models conceived ad hoc, and that the experimental work does not
always account for essential features of anisotropic responses. The experimental
techniques sometimes pass over some fundamental aspects, such as an objective
evaluation of anisotropic plastic hardening or fissuration-induced softening, a
proper interpretation of the “off-axis” tests for anisotropic solids, or a suitable
correlation between the structural micro- and the phenomenological macro-
anisotropy — to mention only a few essential theoretical and applied require-
ments. From both a technological and a scientific viewpoint, an assessment of
the state-of-the-art was required along with the added possibility of defining
a methodology soundly based on modern nonlinear mechanics and developed
in the scope of a unified approach.

Taking into consideration, on the one hand, research aspects and, on the
other, the need to furnish engineers with reliable theories and suggestions for
suitable methods of approach to anisotropy in nonlinear cases, a specialized
meeting was devised. The idea was to bring together theoreticians, experimen-
talists and engineers, interested in the fundamental aspects of mechanical aniso-
tropy, for discussions and interdisciplinary exchanges on the problems of mate-
rial modelling and the experimental evaluation of the directional properties
of solids.

The idea was well received and approved by both the European Méchanics
Colloquia Committee and the French Centre National de la Recherche Scienti-
fique. Their support enabled us to make the idea a reality and to organize this
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meeting on the Mechanical Behavior of Anisotropic Solids. The accepted papers
are contained in this volume.

Our attention was focused primarily on the aspects of modelling and
experiments. We felt it necessary, however, to include some studies concerning
problem-solving methods, as well as certain specific solutions. This was in
keeping with our principal line of thought, ranging from mathematical and expe-
rimental concepts to engineering applications, through the development of
suitable mathematical aids, since good engineering requires mathematically
sound and reliable theories.

This Colloquium was to enable mathematicians, physicists, metallurgists,
specialists in mechanics of solids, soils and rocks, geologists and practising
engineers, all interested in the understanding and application of the anisotropic
properties of solids, to meet together for the first time.

Apart from its general purpose, any meeting, to be successful, has to
define clear objectives and specific guidelines for discussions, in order, rather
than simply accumulating a mass of knowledge, to arrive at a clear and ordered
pattern. Thus, the objectives we hoped to attain were specified as follows:
a) assess the actual state of knowledge in mechanical anisotropy of solids;
b) permit an interdisciplinary exchange of understanding, methods and accu-
mulated experience in describing various anisotropies ; c) formulate or sketch
a common basis and suggest suitable methods for mathematical modelling of
anisotropic behavior ; d) discuss and assess experimental techniques permitting
an objective evaluation of the mechanical properties of anisotropic behavior,
both for the anisotropy of formation and the anisotropy due to deformation
and to the variation of the internal structure under the effect of external
agencies ; e) discuss the relations between micro- and macro- anisotropy, i.e. the
connections between the oriented structure (inborn or induced) and mecha-
nical anisotropy, including the evolution of such connections.

Besides these objectives, related to leading aspects of anisotropy, we had
in mind that the meeting would help to specify the directions of future inter-
disciplinary research. The end result of the Colloquium was intended to deter-
mine the usefulness of such working sessions, both in accounting for the actual
state-of-the-art, and in specifying particular domains, methods and techniques
to be subsequently developed.

Five general lectures in well defined domains formed the framework of
the Colloquium. Our first aim was to have a report on the present state of
knowledge concerning the invariant formulation of constitutive equations for
anisotropic behavior in general. Secondly, since deformation-induced anisotropy
and its measurement are essential, a general lecture was devoted to plastic aniso-
tropy. This domain appears to be largely studied experimentally. Hence, the
relations between experimental facts and their actual theoretical explanation
provide a _possibility of revealing the failings of currently employed mathema-
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tical modelling. Micro- and macro-aspects of anisotropy were the topic of the
third general lecture concerning the metallurgical features of anisotropy. It was
intended to illustrate the states of research on the correlations between the
directional characteristics of the internal structure and the bulk material
behavior. Reports on the anisotropy of composites and the anisotropy of natural
rocks close the group of general lectures, outlining practical aspects of the
Mechanical Behavior of Anisotropic Solids.

Original contributions, chosen in accordance with the adopted guidelines,
were grouped in special sessions, concerning e.g. the invariant formulation of
constitutive equations for materials with directional characteristics, experimen-
tal and theoretical aspects of various oriented materials such as composites,
soils, rocks and ice, and deformation-induced anisotropy in creep and conti-
nuous damage.

It seems that the Colloquium attained the goals proposed. After presen-
tation and discussions, a clear picture was formed, concerning the most suitable
formalism for the development of anisotropic constitutive equations and of rela-
tions between the micro-structural view and the phenomenological theories of
mechanical behavior. This outlines a suitable approach for the study of the
evolution of anisotropic properties during irreversible deformations, due to
plasticity, fissuration and creep. Extensive theoretical work is needed on consti-
tutive and evolution equations, presumably within the framework discussed
here, to arrive at an objective and unified formalism.

We are confident that this volume contains pertinent and useful infor-
mation on present-day knowledge and understanding concerning the mechanics
of oriented solids, with particular emphasis laid on the nonlinear and inelastic
aspects of anisotropy. This conviction is supported by the fact that the parti-
cipants insisted on presenting the results available to a larger community and
expressed their intention of maintaining the established contacts via appropriate
interdisciplinary meetings on specific subjects in the near future. Among the
promising subjects put forward for further studies were: appropriate accounting
for materials internal structure, continuous oriented fissuration and damage
under sustained or repeated external agencies, material hardening and softening,
failure of oriented or stratified solids.

Mechanical anisotropies will no doubt continue to attract the attention
of engineers in various fields, as well as that of material scientists and biologists
in the years to come. We hope that this volume will be of help in their future
studies.

J.P. BOEHLER A.SAWCZUK
University of Grenoble Polish Academy of Sciences

Grenoble and Warsaw, January 1981



Préface

Sur le Comportement Mécanique
des Solides Anisotropes

Le comportement mécanique des solides présente souvent un caractere
anisotrope, c’est-d-dire une variation de la réponse mécanique suivant l'orien-
tation des sollicitations extérieures. L’origine de l'anisotropie mécanique réside
dans le caractére orienté de la structure interne des matériaux, dit aux modes de
formation ou aux procédés de fabrication (anisotropie initiale) : métaux laminés
et filés, alliages et eutectiques orientés, composites fibreux ou lamellaires, roches
stratifiées, argiles consolidées, sables compactés, bois, tissus biologiques (0s), etc.
Lorsqu’'un matériau solide subit des déformations plastiques irréversibles, la
Structure interne €volue jusqu'a la rupture (réorientation des particules et des
axes cristallographiques, glissements internes orientés, formation de fissures et
de cavités orientées, etc.). Ces modifications de la structure microscopique pro-
voquent une évolution de lanisotropie des propriétés mécaniques macrosco-
piques (anistropie induite).

Les propriétés mécaniques des solides anisotropes jouent un role important
dans la Métallurgie, la Science de l'Ingénieur, le Génie Civil et la Géologie. Une
bonne compréhension, une description et une mesure appropriées de la réponse
directionnelle des solides soumis a des sollicitations mécaniques, thermiques,
électriques ou autres sont d’une importance vitale dans différentes branches de
la technologie et concernent en général les problémes de la Science de 1'Ingénieur
dans les objectifs de la société contemporaine. A titre d’exemples, on peut citer
deux applications liées a des soucis de qualité des produits et d’économie de ma-
tiéres premieéres et d’énergie : optimisation des procédés de fabrication pour
obtenir des matériaux présentant des caractéristiques mécaniques adaptées;
optimisation de la tenue des structures soumises @ des conditions d utilisation
séveres. L utilité pratique du développement des connaissances dans le domaine
du comportement des solides anisotropes concerne des secteurs trés diversifiés,
comme la métallurgie, la mécanique de l'ingénieur, la construction navale, aéro-
nautique et nucléaire, le développement des matériaux composites et renforcés,
la géologie, la construction de tunnels et de zones de stockage sous-terrains, la
prévention des avalanches, la sismologie, etc.

Les études du comportement plastinue des solides anisotropes peuvent
étre regroupees suivant quatre axes : 1) tester, évaluer et décrire d’une maniére



X1V

objective les propriétés mécaniques des matériaux anisotropes ; 2) synthétiser
le comportement matériel dans des modéles mathématiques adéquats, prenant
en compte les effets des grandes déformations irréversibles ; 3) développer des
méthodes appropriées pour la résolution des problémes aux limites ; 4) résoudre
des problemes spécifiques concernant la déformabilité, la fissuration et la rup-
ture, en vue de la mise en aeuvre de procédés technologiques adaptés et de la
construction de structures optimisées. Les perspectives 4 moyen terme
concernent les trois premiers axes, dont le développement est indispensable
pour pouvoir résoudre des problémes spécifiques.

La détermination des propriétés anisotropes et le développement des
modéles mathématiques du comportement mécanique dans le domaine non
linéaire exigent des études théoriques et expérimentales adéquates. Une somme
de connaissances et de résultats pour la description des différents aspects de
lanisotropie est déja disponible, aussi bien dans les centres universitaires, que
dans lindustrie. Cependant, les approches théoriques er expérimentales actuelles
sont encore trop diversifiées dans les techniques utilisées et limitées dans les
résultats obtenus. Des problemes fondamentaux comme, par exemple, la des-
cription réaliste de I'écrouissage anisotrope, linterprétation correcte des essais
“hors-axe”, la quantification des corrélations entre l'anisotropie de structure et
Uanisotropie mécanique, sont encore mal formulés. D’autre part, la diversité
des disciplines scientifiques et des domaines techniques dans lesquels 1'aniso-
tropie joue un role, a empéché une concertation entre les différentes approches
des problémes liés au comportement anisotrope des solides.

Devant une telle situation, il nous a semblé opportun de provoquer la
réunion de théoriciens, d’expérimentateurs et d'ingénieurs s’intéressant aux
diverses caractéristiques de l'anisotropie des solides. Le Comité Européen de
Mécanique et le Centre National de la Recherche Scientifique ont bien voulu
nous confier l'organisation d’'un Colloque International sur le Comportement
Mécanique des Solides Anisotropes.

Ce Colloque a réuni, pour la premiére fois semble-t-il, des Mathématiciens,
des Physiciens, des Métallurgistes, des Mécaniciens des Solides, des Sols et des
Roches, des Géologues et des Ingénieurs, spécialistes de l'anisotropie des solides
dans leurs domaines de recherches spécifiques, pour essayer d atteindre les objec-
tifs suivants : a) évaluer l'état actuel des connaissances dans le domaine du
comportement mécanique des solides anisotropes; b) permettre un échange
interdisciplinaire de conception, d’'expérience et de méthode ; c) aider d déve-
lopper ou améliorer les modélisations mathématiques des comportements ani-
sotropes, les techniques expérimentales pour la mesure objective des propriétés
mécanique et les études des corrélations entre l'anisotropie de la structure maté-
rielle et l'anisotropie du comportement macroscopique ; d) définir les voies de
recherches prioritaires ; e) favoriser la poursuite ultérieure de cette concertation
interdisciplingire,
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Cing conférences générales, sur des theémes bien définies, ont formé le
cadre général du Colloque. Notre premier but était d avoir un rapport sur l’état
actuel des connaissances concernant la formulation invariante des équations
constitutives pour le comportement anisotrope en général. Ensuite, comme
lanisotropie induite par déformation et sa mesure sont essentielles, une confé-
rence genérale a été consacrée a lanisotropie plastique des métaux. Les études
expérimentales dans ce domaine sont assez nombreuses. La confrontation entre
les réalités expérimentales et les tentatives actuelles pour leur explication théo-
rique a fourni la possibilité de révéler les faiblesses des modéles mathématiques
couramment utilisés. Les anisotropies microscopiques et macroscopiques ont
constitué le theme de la troisieme conférence générale, consacrée aux aspects
métallurgiques de lanisotropie. Le but était de présenter l'état actuel des
recherches dans le domaine des corrélations entre les caractéristiques direction-
nelles de la structure interne des métaux et l'anisotropie du comportement méca-
nique global. Les matériaux composites jouent un role trés important dans la
technologie moderne. Une caractéristique essentielle de ces matériaux artificiels
est lanisotropie trés prononcée de leur comportement mécanique. La quatriéme
conférence présente les différentes méthodes permettant de déterminer les pro-
priétés mécaniques macroscopiques a partir des propriétés des consituants, ainsi
que les résultats obtenus dans l'étude des déformations élastoplastiques de ces
matériaux. La cinquiéme conférence générale a été consacrée aux connaissances
actuelles dans le domaine du comportement mécanique des roches, en liaison
avec les modes de formation de ces matériaux naturels et les déformations
tectoniques subies au cours de leur histoire. Le cycle des conférences générales
Sachéve par ces deux derniers rapports, exposant les aspects pratiques du
Comportement Mécanique des Solides Anisotropes.

Les contributions originales ont été regroupées en douze sessions traitant
de themes spécifiques. Trois sessions spécialisées ont été consacrées d la formu-
lation invariante des lois de comportement, aux propriétés physiques des maté-
riaux anisotropes et aux problémes de Génie Civil. Les neuf autres sessions ont
été consacrées aux différents aspects théoriques, expérimentaux et appliqués des
matériaux anisotropes, comme les métaux, les composites, les eutectiques, les
cristaux liquides, les sols, les roches, le bois et la glace. Les comportements
mécaniques étudiés concernent [élasticité, la plasticité, la viscoplasticité,
l'écrouissage, le fluage et l'endommagement anisotropes. Plusieurs communi-
cations sont spécialisées dans I'étude de l'anisotropie induite par déformation
irréversible, évolution de la structure interne et fissuration orientée.

Il semble que le Colloque a atteint les buts proposés. Aprés la présentation
des contributions et les discussions, des idées claires se sont formées, concernant
le formalisme le plus adéquat pour le développement des lois de comportement
anisotrope et des relations entre l'approche au niveau de la microstructure et
l'approche macroscopique phénoménologique du comportement mécanique
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des solides anisotropes. L’étude de l'évolution des propriétés anisotropes au
cours des déformations irréversibles exige encore un travail théorique impor-
tant, qui devrait étre développé dans le cadre général défini par le Colloque, afin
d’aboutir a un formalisme objectif et unifié.

Nous sommes persuadés que ce volume contient des renseignements perti-
nents et utiles sur les connaissances actuelles dans le domaine de la mécanique
des solides a structure interne orientée et plus particuliérement sur les aspects
non linéaires de lanisotropie. Cette conviction est renforcée par le fait que les
participants ont exprimé le souhait que les résultats présentés soient aisponibles
pour une plus grande communauté et que les contacts établis puissent étre main-
tenus par des rencontres interdisciplinaires sur des sujets spécifiques dans un
proche avenir. Parmi les voies de recherches prioritaires a développer, nous men-
tionnons la prise en compte approprié¢e des structures internes orientées, la crois-
sance de la fissuration et de l'endommagement sous l'effet des solliciations ex-
ternes, l'écrouissage anisotrope, la rupture des solides anisotropes.

Dans les années d venir, l'anisotropie mécanique continuera certainement
d attirer l'attention des ingénieurs dans les différents domaines d applications,
ainsi que celle des spécialistes de la science des matériaux et des biologistes.
Nous espérons que ce volume apportera une aide dans leurs recherches futures.

J.P. BOEHLER A. SAWCZUK
Université de Grenoble Académie Polonaise des Sciences

Grenoble et Varsovie, Janvier 1981
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N°© 295 — COMPORTEMENT MECANIQUE DES SOLIDES ANISOTROPES

General Lecture : Conférence Générale

The Formulation of Constitutive Equation
for Anisotropic Solids

A.J.M. Spencer

The University of Nottingham, Nottingham, England.

1. Introduction

The plan of this lecture is that I shall first review some results in the theory
of algebraic invariants of vectors and tensors in three dimensions, under the
orthogonal group of transformations. Then I will show how, in some cases
of interest, it is possible to use these results for invariants under orthogonal
transformations to determine invariants of vectors and tensors under groups
of transformations which are sub-groups of the orthogonal group. As examples,
I shall consider (a) the case in which the group of transformations is the group
of rotations about an axis, which is the symmetry group for a transversely
isotropic material, and (b) the case in which the transformation group is gener-
ated by the set of reflections in three orthogonal planes, which is the symmetry
group for an orthotropic material. Next I will show how these results can be
applied to the problem of determining mechanical constitutive equations for
anisotropic materials with various types of stress response; in particular I shall
consider materials whose stress response is that of a linear or a non-linear elastic
solid, or that of a plastic solid, and illustrate the results by considering trans-
versely isotropic and orthotropic materials. Many fibre-reinforced and laminated
materials are, on the macroscopic scale, either transversely isotropic or ortho-
tropic, and I shall give particular consideration to materials of this kind, and
especially to the case in which the preferred directions are not uniform, but
vary with position in a body. Finally, I will discuss the effect on the consti-
tutive equations of the kinematic constraints of incompressibility and inex-
tensibility in specified directions.

Invariance problems arise frequently in continuum mechanics. Probably
the simplest example is the strain-energy function of an elastic solid. Suppose
that a body of an elastic material undergoes a deformation in which a typical
particle which initially has position vector X, with components X (R =1,2,3)
moves to the point with position vector x and components x; (i =1,2,3).
Then the deformation is described by equations of the form

x=xX), or x;=xXg)- (1.1)
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Then it can be shown that the strain-energy function W can be expressed in
the form

W =W(Crs), (12)
where
_ 0x; 0x;
RS — '5(; 5;5 ’

(1.3)

and Cgg are components of a second-order symmetric tensor C. The repeated
index summation convention is used in (1.3) and in future.

Now consider a second deformation in which the particle whose initial
position is X = Q . X moves to the point with position vector x, thus

x=x(X) or x=x,Xg), (14)

where Q is an orthogonal tensor with components Qgg (all components are
components in a fixed rectangular Cartesian coordinate system) so that

Qpr Qps = QrpQsp = 8gs, detQ=*1, Xp=QsXs, (1.5

where & g g represents the Kronecker delta. Then

_ ax;

RS~ 3Xp Xs

0x; _ T
=QrpQsqCpq, or C=Q.C.Q . (1.6)

In general the deformations (1.1) and (1.4) will give rise to different values
of W. However it may happen that, for certain orthogonal tensors Q,

W(Crs) = W(Crs), or W(Q.C.Q")=W(0), (1.7)

where the Crg are evaluated at the origin. It can be shown that the orthogonal
tensors Q for which (1.7) is satisfied form a group, which is called the symmetry
group of the material.

If (1.7) is satisfied for all orthogonal tensors Q, then the symmetry group
is the full orthogonal group in three dimensions, the material is isotropic, and
W is an isotropic invariant of C. If (1.7) is satisfied for some, but not all, ortho-
gonal tensors Q, then the symmetry group is a subgroup of the full orthogonal
group. When the symmetry group is the proper orthogonal group, or rotation
group, in three dimensions, then the material is hemitropic; in many cases,
including those considered in this lecture, the distinction between isotropy
and hemitropy is not important.
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Let n be a unit vector with components n;. Then a rotation through
an angle a about an axis through the origin and in the direction of n is defined
by the orthogonal tensor Q (a) whose components are

(")(a)—ﬁ cos @ + epgpnp sin @ + (1 — cos &) np ng , (1.8)
RS Rspp RO

where epgp is the alternating symbol. The tensors Q(")(a) (0 <a<2n) form
a group (the group of rotations about the axis n). A reflection in planes normal
to n is characterized by the reflection tensor R® whose components are

RM =5, —2n;m; . (1.9)

If a is a unit vector normal to n, then R( 8) represents a reflection in planes
normal to a (and parallel to n), and Q (17) represents a rotation through T
about a. In all there are five continuous groups generated by Q (a) and
various combinations of R() R® and Q (77) The generators of these
groups are

0 @, G) Q®@,R®, (i) Q™ (),R™,

1.10

o @, m, © @, mrO ™. 1
These are the symmetry groups for various forms of transverse isotropy. For
our purposes the distinctions between these five cases are not important and
we can characterize elastic transverse isotropy about the axis n by invariance
of W(C) under the rotations Q (a)

The symmetry groups for the various kinds of crystal symmetry are
finite subgroups of the full orthogonal group. For illustration we shall consider
the case of orthotropy. Let a, b and ¢ be three mutually orthogonal vectors.
Then an orthotropic material has reflectional symmetry with respect to the
planes normal to these three vectors, so that its symmetry group is generated
by the three tensors R(a), R™® and R©. The symmetry group is therefore
comprised of the tensors

I, R(ﬂ), R(b) , R(c), Q(a) (Tf) = R(b) . R(C), Q(b) (TT) — R(C) . R(a) ,
Q(C)(Tr) — R(a) . R(b) , —I= R(a) . R(b) . R(C) . (1.1 1)

For an orthotrogic elastic material, W(C) is invariant under each of the trans-
formations (1.11).

Another problem in continuum mechanics which gives rise to similar
invariance problems is that of determining the form of the yield function for
a plastic solid. The yield function is a function F(T};) of the stress compo-
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nents Tj; of the stress tensor T. The yield function is invariant under any of
the transformations represented by the tensors which form the symmetry
group of the material. Thus,

F(T)=F(@Q.T.Q"), (1.12)

for each Q which belongs to the symmetry group.

The above examples lead to special cases of the following algebraic
problem. Let A, B, C,... be a finite set of symmetric second-order tensors
in three dimensions, and a, b, c, ... be a finite set of vectors in three dimen-
sions (it is possible also to include a set of anti-symmetric tensors, but for
brevity we omit these). Let

A=Q.A.Q",etc, a=0Q.a,etc, (1.13)
where Q is an orthogonal tensor, and let
f(A,B,C,...,a,b,c,...)
be a polynomial in the components of the vectors and tensors. Then if
f(A,B,C,...,a,b,c,..)=f(A,B,C,...,a,b,c,..)) (1.14)

for all Q belonging to a group G, then f is an invariant under this group. The
problem is to determine canonical forms for f; that is, to determine a set I,
I,, I5,... of invariants such that any invariant f can be expressed as a poly-
nomial in I,,1,,1I5,... . The set I,, I,, I;,... is then called an integrity
basis. A classical theorem due to Hilbert asserts the existence of a finite inte-
grity basis. If the integrity basis is such that none of its elements can be ex-
pressed as a polynomial in the remainder, then the integrity basis is irreducible,
and the aim is to determine an irreducible basis for a given set of vectors and
tensors and a specified symmetry group.

An apparently more general problem is that of finding tensor polynomial
functions of vectors and tensors which are form-invariant under a given sym-
metry group. Suppose, for example, that T is a symmetric second-order tensor
function of A,B,C,...,a,b,c,.... Then T is said to be form-invariant
under the transformation Q if

Q.T(A,B,C,...,a,b,c,..).Q" =T(A,B,C,...,a,b,c,...).
(1.15)
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The problem is to determine canonical forms for T. This problem can be
reduced to the invariance problem described above by a device due to Pipkin
and Rivlin [5]. If u is an arbitrary vector, then

F(A,B,C,...,a,bc,...;u) =u.T(A,B,C,...,a,b,c,...).u (1.16)

is an invariant of A,B,C,...,a,b,c,..., and u, and is of degree two in
the components of u. Hence F can be expressed as a polynomial in the elements
of the integrity basis for A,B,C,...,a,b,c,..., and u, of degree two in
the components of u; therefore F is of the form

F=2 60,,1,....1) K™ uu;,

y
m

where Il,Iz,...Irt are elements of the integrity basis for A,B,C,...,
a,b,c,..., and Pi}“) u;u; are invariants of A,B,C,...,a,b,c,..., and
u, of degree two in u, which can be determined from the integrity basis for

these tensors and vectors. It follows that T has the form
T=Y ¢(1;,1L,...,1[,)P™. (1.17)
m

Similar procedures can be applied to determine form-invariant tensors of any
order.

A further problem is to relax the restriction that f be a polyno-
mial in its arguments, and to seek a functional basis I'l,I'2,I;,... of
invariants of A,B,C,...,a,b,c,... such that any invariant function
f'(A,B,C,...,a,b,c,...) can be expressed as a single-valued function
of I},I,,I5,.... An integrity basis is always a functional basis, but an
irreducible integrity basis is not necessarily an irreducible functional basis.

2. Isotropic Integrity Bases

The problem of determining an irreducible integrity basis for an arbitrary
number of vectors and tensors has been solved in a series of papers by Rivlin
[6], Spencer and Rivlin [16-19] and Spencer [12,13]. A fairly complete account
is given in Spencer [14]. Here we briefly outline some parts of the theory which
will be used later in this lecture.

Consider a set of v vectors al® (r=12,...,v) and \ second-order
symmetric tensors A©® (s=12,...,})), and let I be a polynomial invariant
of these vectors under the full or the proper orthogonal transformation group.
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Without loss of generality it can be assumed that I is homogeneous in the
components of the vectors and tensors. Hence I has the form

— (rp (1'2) (r (51)  (sp) (s
D=8 iy iniykyigky e imkm iy 2y -3y Ajjky Ak, Aj ko
.1
where 1,,1,,...,1, are integers (not necessarily all different) chosen from

12,...,», and sl,sz,...,sm are integers (not necessarily all different)
chosen from 12,...,}, and Biliz vipi KyigKky.. imky, 3T 2 Set of nume-
rical coefﬁc1ents Under an orthogonal transformation Q, the components
of a® and A® are transformed to

=0, AL =00 @2

Smce I is unchanged if a (®) s substituted for a? and A®® is substituted for
A® it follows from (2.1) and (2.2) that

Biyig...iniyKyigky - imkm = Qyiy aiy: - -

: 'Ql’nin qujl Qt1“1 qujz Q‘zkz T

’ 'qujm thkm Bplpz"'pnqlth2t2"'qm tm (23)
A tensor 8 whose components have the property (2.3) for all orthogonal
tensors Q is called an isotropic tensor; its components are the same in any
rectangular Cartesian coordinate system.

To determine the isotropic tensors we consider the case in which I is
an invariant only of the vectors a(”, so that (2.1) reduces to

(1'1) (1'2) (l'n)
a a .

in i, i, ¥y

=6 ; (24)
It was proved by Cauchy that an integrity basis for a set of vectors consists

of the scalar products a® .a{® (r,s=1, 2, ..., ») and the determinants
€ijk ag') aj(s) af(t) (r, s, t =1, 2, ..., v). Hence I can be expressed as follows:

) (r3) ) (s1) (s2) (3)
= zﬁn (il) ("2)( l'3 (f4) (eij ]Sl 52 3) (25)
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The determinant factor need occur at most once in any term because of the
identity

6il' 6jr 5kr
eijk Crst = ais 6js sks . (2-6)
B¢ 8jt Oy

By equating (2.4) and (2.5) it follows that the components of the isotropic
tensor {3 are linear combinations of products of the form

6iljl 6i2j2 U 6ip.ip (27)
if 3 is of even order 2p, and of the form
8iyiy Bigiy -+ Sipip Ckikoks (2.8)

if 8 is of odd order 2p + 3. This method of determining the isotropic tensors is
due to Smith and Rivlin [10]. For simplicity we consider only the case in which
B is of even order, so that the invariant I in (2.1) is of even degree in the
components of the vectors. This is also the only case which arises if the
symmetry group is the full orthogonal group, because the determinant
€iik a§"’ a}'z) a§'3) changes sign under a transformation for which det
Q= —1, and so is invariant only for proper orthogonal transformations.

By substituting for 3 in (2.1), it follows that I can be expressed as a
polynomial in expressions of the forms

D = P, g PR) g9 = o0 PR o9 29)

where P(!) and P®) are tensor products formed by taking inner products
of any number of the tensors A(® in any order. Hence (2.9) constitute
an isotropic integrity basis for the vectors and tensors. However this integrity
basis is not finite. The basis can be reduced to a finite basis by arguments based
on a generalization of the Cayley-Hamilton theorem which show that tr PV
is reducible if P(!) is of degree greater than six in A, and a(® P@)  a(® js
reducible if P@ is of degree greater than four in A® (an invariant is said
to be reducible if it can be expressed as a polynomial in invariants of lower
degree). It then remains to determine an irreducible integrity basis. This has
been accomplished by detailed examination of all the possible cases. The
process is rather laborious but has been carried out. The resulting irreducible
integrity basis for an arbitrary number of vectors and second-order tensors is
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tabulated in Spencer [14]. The irreducibility of the basis has been established by
Smith [7] using methods of the theory of group representations which yield the
number of linearly independent invariants of each degree in the vectors and
tensors. More recently, Smith [9] has shown how group-theoretic methods can
be used to construct an integrity basis in a systematic way.

The problem of constructing a functional basis has been considered by a
number of authors. Many of the published results are not correct ; the main
source of error is failure to ensure single-valuedness of the representation of
any invariant as a function of the elements of the basis. Complete functional
bases have been given by Smith [8] and Boehler [1]. For the comparatively
simple cases which arise in this lecture the irreducible integrity basis is also an
irreducible functional basis.

3. Transverse Isotropy

We shall consider the problem of determining an integrity basis for a single
symmetric second-order tensor for the symmetry groups (1.10), but the method
used may be extended to the more general problem defined by (1.14). The
main results for a single tensor have probably been known for a long time ;
they are given explicitly by Ericksen and Rivlin [3]. The usual approach is to
refer the tensor to a coordinate system in which one of the axes coincides
with the axis of transverse isotropy. However there is some advantage
in developing the theory in a manner which does not depend on the
introduction of a special coordinate system; this becomes apparent when
we consider applications to fibre-reinforced materials. If the fibres are suitably
arranged, then a composite material which consists of an isotropic matrix
reinforced by a single family of aligned fibres is, on the macroscopic scale,
transversely isotropic with the fibre direction as the axis of transverse isotropy.
However the fibres need not be arranged in straight lines, and so the direction
of the axis of transverse isotropy may vary with position in a body. It is
straightforward to adapt results which are based on a special choice of
coordinates to allow for such variation, but it is also of interest to develop the
theory in a coordinate-free manner from the outset, and we shall proceed to do
this in two distinct ways.

The problem is now to determine canonical forms for a polynomial
function ¢(Cgrg) which satisfies

#(C) = ¢(Q.C.Q") (3.1)

for all Q = Q®(a), for 0 < a < 2m, where the components of Q(® () are
given by (1.8) and a defines the axis of transverse isotropy. We solve this
problem in two ways.
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The first approach is to employ the anisotropic tensors which were
introduced by Smith and Rivlin [10]. The invariant ¢ is of the form

¢(C) = ailjli2j2 . ipjp Ciljl Ci2j2 e Cipjp' (3.2)
It follows by arguments similar to those leading to (2.3) that

U 121kp0; ... kp2p = Ueqiy iy Quegiz -+ Qopip %igigis ... ipip (33)
for all Q = Q® (a). A tensor @ with the property (3.3) is said to be an
anisotropic tensor for the symmetry group {Q(®)(a)}. The anisotropic
tensors for a given symmetry group are readily calculated if an integrity
basis for invariants, under that symmetry group, of an arbitrary number of
vectors is known. For transverse isotropy this integrity basis is well-known ; it
is essentially the integrity basis for two-dimensional vectors under orthogonal
transformations in two dimensions, and consists of the scalar products
a™ _ a(® together with the resolved components a.a() of the vectors a‘"
in the direction of a. The corresponding anisotropic tensors then easily follow
by a procedure analogous to that used in deriving the isotropic tensors (2.7}
and (2.8). The result is that the components of « are of the form

a11j1i2j2---ipjp = Z'YN 8k1Q1 6k2§22 ...6kqu aml am2 ...amr, (3.4)
n

where k,, £, k,, &,, ..., ky, 24, my, m,, ..., m, is a permutation of
iy, §ys 135 d2s -+ ips jp and 2p = 2q + r (and hence r is even). Results equi-
valent to (3.4), with a chosen to coincide in direction with the xj-axis,
were given by Smith and Rivlin [10].

By substituting (3.4) into (3.2), it follows that ¢(C) is a linear combi-
nation of polynomials in a; and C;;, with coefficients which are products of
Kronecker deltas; thus ¢ (C) is an isotropic invariant of a and C. An isotropic
integrity basis for a and C is a transversely isotropic integrity basis for C. It
must be noted, however, that an irreducible isotropic integrity basis for a and C
is not necessarily irreducible when it is regarded as a transversely isotropic
basis for C.

The alternative derivation of this result is based more on physical
argument. For definiteness, consider an elastic material reinforced with a
single family of fibres, which are characterized by the unit vector a in the
reference configuration. Then W must depend on the deformation gradients
0x;/0XR and on a, and by the usual arguments we obtain

W =W(C,a). 3.5
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If the only anisotropic properties of the material are those which arise from
the presence of the fibres, then W is unchanged if we choose a new reference
configuration which is obtained by a rigid rotation of the undeformed material
and the fibres, and in which the particles are initially at X = Q.X and the
fibre direction is Q.a where Q is any proper orthogonal tensor. Hence

W(C,a) = W(Q.C.Q",Q.a), (3.6)
and thus W is an isotropic invariant of C and a.

To . determine the transversely isotropic integrity basis for C explicitly,
we first note that ¢ (C) must be even in a. Hence it is sufficient to construct
an isotropic integrity basis for C and a ® a, where ® denotes the dyadic
product (a ® a is the symmetric second-order tensor whose components are

a;3;). This integrity basis can be read off from tables; it consists of the traces
of the following tensor products:

C,C%,C3,a®a, (a®a), (a®a)’,C.a®a, C.(a ® a)?,
C?.a®a C2.a®a. (37

However, since a is a unit vector

a®a=(@®a)’=@aa®a)’=.... (3.8)
Also

tra®a=1,trC.a®a=a.C.a, trC>.a®a=2a.C%.a. (39
With (3.8) and (3.9), the set (3.7) reduces to

trC, trC%, trC? a.C.a, a.C’.a, (3.10)
and this is the irreducible transversely isotropic integrity basis for C. It agrees
with the results of Ericksen and Rivlin [3]. An equivalent and, for our purposes,
more convenient set is

trC, 1/2{(trC)> — tr C?}, detC, a.C.a, a.C?.a. (3.11)

4. Orthotropic Symmetry

The symmetry group for orthotropic symmetry with respect to three orthogonal
planes normal to the unit vectors a, b and ¢ is given by (1.11).



The Formulation of Constitutive Equations 13

The anisotropic tensors for all of the finite symmetry groups which
characterize the crystal classes have been obtained by Smith and Rivlin [11].
For orthotropic symmetry these tensors, expressed in coordinate-free form, are
linear combinations of outer products formed from

a®a, b®b, c®c 4.1)
Since a, b and ¢ are mutually orthogonal, we have
a®a+b®b+c®c=1, 4.2

and we may discard one of the set (4.1), say ¢ ® ¢, in favour of the unit tensor
I, and take, as a basic set of anisotropic tensors, the tensors

a®a, b®b, L (4.3)

It follows by arguments analogous to those used in Section 3 that any poly-
nomial invariant of C, under the transformation group (1.11), is a polynomial in
the components Cpg of C, the components a; of a, and the components b;
of b, which is of even degree in the components a; and of even degree in the
components b;, and is invariant under all orthogonal transformations. Thus in
this case also the tables of isotropic invariants can be used to determine an
integrity basis for C in the case of orthotropic symmetry ; specifically, an
isotropic integrity basis for a ® a, b ® b and C will be an integrity basis for C
for orthotropic symmetry with respect to planes normal to a, bandc =a x b.

This result also can be obtained by more direct physical arguments. One
method of constructing an orthotropic material is by building up layers of thin
sheets of unidirectionally reinforced fibre-reinforced materials in some regular
sequence, with the reinforcement in each layer lying initially in the direction
either of a or of b, where a and b are orthogonal. Then, in the case of an elastic
material, W depends on C, a and b, and since the sense of the fibres is not
important, W has to be an even function of a and an even function of b. As in
the case of Section 3, W is unchanged if we choose a new reference configu-
ration in which the particles are at X = Q.X and the fibre directions are Q.a
and Q.b, and it follows that W is an isotropic invariant of C,a ®aand b ® b.

From tables of isotropic invariants, an isotropic integrity basis for C,a ® a
and b ® b is (omitting invariants which can be eliminated by relations analogous
to (3.8)) the traces of the following tensor products:

C, C2, C3, a®a b®b, C.a®a, C>.a®a, C.b®b,
C2.b®b, a®a.b®b, a®a.b®b.C, a®a.b®b.C> (44)
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Since a and b are orthogonal unit vectors
tra®a=trb®b=1, a®a.b®b =(a.b)a ®b=0, 4.5)

and so the integrity basis reduces (after some rearrangement) to
I,=trC, I,=1/2{trC)P? —trC?}, I;=detC,

(4.6)
a.C.a, a.Cla, b.Cb, b.C’b.

Another way to construct an orthotropic material is by building up
thin sheets of unidirectionally reinforced fibre-reinforced material according
to a regular sequence, but with the fibres initially aligned in the directions
of two unit vectors d and e which are not necessarily orthogonal, but are
inclined at an angle 2®. In the general case, the symmetry transformations
for such a material are

I: - I’ R(C): Q(C) (ﬂ) H (4'7)

where ¢ is orthogonal to d and e. If the material is elastic, then its strain-
energy function W is an isotropic invariant of

C, d®d, e®e, (4.8)

and an integrity basis is

I,, I, I;, d.Cd, d.C2.d, e.C.e, e.Cz.e,
49
cos 20 d.C.e, cos2<I)d.C2.e, and cos?2®.

However it can be shown that cos2®d.C2.e may be expressed in terms
of the other invariants, and so this invariant may be omitted from the integrity
basis.

The symmetry group (4.7) does not describe an orthotropic material.
However, if the two families of fibres are mechanically equivalent (as, for
example, when the successive sheets of unidirectionally reinforced material
are alternately aligned in the directions of d and e, but are otherwise iden-
tical) then the bisectors of d and e are also planes of symmetry, and the ma-
terial is orthotropic. In this case W has to be a symmetric function of d and
e, and so (4.9) (with cos2® d.c’.e eliminated) may be replaced by the
following set of invariants:

I,, I, I, d.Cd+e.Ce, (d.C.d)(e.C.e),
d.C’.d+e.C’e, (d.C*.d)(e.C’.e), cos2dd.C.e, cos?2d.
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However (d.C2 .d) (e .2 .e) can be expressed in terms of the other inva-
riants, and omitted, and so W can be expressed as a function of

I,, I,, I3, d.C.d+e.Ce, (d.C.d)(e.C.e),

5 5 ) (4.10)
d.C°.d+e.C°e, d.C.ecos2®, cos“2d.

The two sets of invariants (4.6) and (4.10) are both integrity bases for
C for the case of orthotropic symmetry, and so they must be equivalent. This
can be shown directly. The unit vectors a and b which bisect e and d are

a=(d+e)2cosd, b=(d-e)2sind. (4.11)
so that
d=acos®+bsin®, e=acos® —bsind. 4.12)

If (4.12) are substituted into (4.10), we obtain a set of invariants which can
be shown to be equivalent to the set (4.6), with the addition of cos® 2&.

It is apparent that this approach can be extended to the determination
of integrity bases for systems of vectors and tensors, and can be applied to
other symmetry groups besides those considered in Sections 3 and 4. A similar
method has been applied to a variety of problems by Boehler [2].

5. Linear Elasticity

For a linear elastic solid the strain-energy function is a quadratic function of
the components E;; of the infinitesimal strain tensor E.

For a transversely isotropic material the most general quadratic function
which can be formed from the invariants (3.11) (with C replaced by E) is of
the form

W =1/2 \(tr E)2 + pg tr E®*+ a(@a.E.a)trE + 2(py, —uT)a.Ez.a +
+1/2B@.E.a)?, (5.1)
where A, uy, 4, , @ and § are elastic constants. The stress is given by
T, = OW/3E; , (5.2)
from which it follows from (5.1) that
Ty = NEiye 8y + 2urEy; + a(agan Exm 85 + 23jE i) (5.3)

+ 2(“14 —MT)(aiakEkj + ajakEki) + ﬁaiajakam Ekm .
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This is in agreement with the well-known expression for the stress in a trans-
versely isotropic linearly elastic material. The constants y; and py represent
shear moduli. The other constants A, a and § can be related to elastic constants
which have more direct physical interpretations, such as extension moduli
and Poisson’s ratios.

For an orthotropic material the most general quadratic form for W is,
from (4.6),

W =1/2AtrE)?> + utr E* + a,(a.E.a)trE
+ oy (b.E.b)tr E + 2u,a.E*.a + 2u,b.E*.b

+1/2 8,(a.E.a)* + 1/2 6,(b.E.b)* +f,(a.E.a) (b.E.b)
(54)

where A, u, oy, @,, iy, My, By, B, and B; are elastic constants. The corres-
ponding expression for the stress is

T; = (\E, + a;a,aE  + a,b bE )5
+ (o, E,, + B,a,aE. + B3b.b.E.) a;3;
+ (0, E,; + B33,a.E,  + B, b, bE ) bib;
+2uE;; + 2u (a2 Ey; + a5 Ey )
+ 24, (biby Byj + bjby By . (5.5)

This expression also is in agreement with known results.

There is nothing in this formulation which requires a to be constant
in the case of transverse isotropy or a and b to be constant in the case of
orthotropy. Therefore the constitutive equations (5.3) and (5.5) can be
used if the directions which characterize the anisotropy vary from point to
point, as would be the case, for example, for a fibre-reinforced material in
which the fibres are arranged in families of curves which are not straight
lines. Similar remarks apply to the constitutive equations which will be
formulated in the next two sections.

6. Finite Elasticity

The constitutive equation for a finite elastic solid with strain-energy function
W(Cgg)is

T p 0x; 0x; ow + aw ©.1)
U7 0y 8Xg 0Xg '

0Crg  0Cgr
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where x;, Xp and Crq were defined in Section 1 and p, and p denote the
densities in the reference and deformed configurations respectively. Consider
first a transversely isotropic material in which the axis of transverse isotropy
is in the direction of a vector a, in the reference configuration. Then, from
(3.11), W is a function of

I,=trC, IL=12{trC)® —trC?}, 1I,=detC = (py/p)*,
I,=a,.Ca,, I3=2,C%a,. (62)
We note also that a material line element with direction a, in the reference

configuration has the direction of a unit vector a in the deformed configuration,
where

X,
Aa = —> al® 6.3
a%i aXR R ( )

and A, is the stretch of the line element, given by
M=, (6.4)

It is also convenient to introduce the tensor B, whose components B;;
are given by
0x;

0x;
Bij = —
aXg 9Xg

6.5)

From (6.1) and (6.2) it follows that T;; can be expressed in the form

p 3 3 S W [ala N ala]

i ;)—0 a—_x;( aXS a=1 anz aCRS aCSR

(6.6)

By calculating the derivatives dI,/0Cpg, substituting these derivatives into
(6.6), and using the relations (6.3), (6.4) and (6.5), and the Cayley-Hamilton
theorem for B, we find eventually that (6.6) can be expressed in the form

T =2;"2{(,W, + ,W,)I+W,B - LW,B~' +,W,a®a
+L,W;(a®B.a+a.B®a)}, (6.7)

where W, denotes 0W/d1,, .
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The constitutive equation for an orthotropic elastic body can be obtained
in a similar way. In this case W is a function of

I, I, I, I, I5, Ig=by.C.by, I,=0by.C>b,, (6.8)

where a; and b, are unit vectors normal to two planes of reflectional symmetry
in the reference configuration. If a and b denote unit vectors in the deformed
configuration in the directions of line elements which had the directions of
a, and b, in the reference configuration, then (6.1) gives

T =212 {(1,W, + LW;)I+W,B - LLW,B~' +I,W,a®a

+ W b®b + [,W(a®B.a+a.BQ®a)
+I,W,b®B.b+b.BA®b)}. (69)

The constitutive equations (6.7) and (6.9) are equivalent to those given
by Ericksen and Rivlin [3] and by Green and Adkins [4] for transversely iso-
tropic and orthotropic elastic materials, but they are here expressed in a coordi-
nate-free form and the method of derivation is rather different.

7. Plasticity

Most theories of plasticity assume the existence of a yield condition. We consi-
der yield conditions of the form

F(Ty) < kK*, (7.1)

where k depends on the deformation history, and F(Tij) is the yield function,
and is homogeneous of degree two in the stress components T;;. F(T;;) is inva-
riant under the transformations of the symmetry group. Hence, from (3.10),
for a transversely isotropic material, F(T};) can be expressed as a function of

J,=trT, J,=12uT?, J,=13uT’, J,=aTa,
Js=12a.T .a, (7.2)

where a is the axis of transverse isotropy. For an orthotropic material, F(Tj;)
can, from (4.6) (with a minor modification), be expressed as a function of

I, 3, 35, I J5, Jo=b.Tb, I,=12b.T%b, (7.3)



The Formulation of Constitutive Equations 19

where a and b are unit vectors normal to two of the planes of reflectional
symmetry.

In plasticity theories it is often assumed that F(T};) is a plastic potential,
such that the components D}’j of the plastic strain-rate DP are given by

Df=A P (74)
ij

where A is a scalar multiplier. From (7.2) this gives, for the case of transverse
isotropy,

D° = A{F,I+F,T+F,T°+F,a®a+1/2F;(a®T.a+a.T®a)},

(7.5)
and, for the case of orthotropy,
D’ = A{F,1+F,T+F,T* +F,a®a+ F (b ®b)
+1/2F;@®T.a+a.T®a)+1/2F,(b®T.b.T®a)}, (7.6)

where F, = 9F/a]J, .

8. Kinematic constraints. Elasticity

It is well-known that many problems in continuum mechanics are greatly sim-
plified if the material concerned is regarded as incompressible, and that for
some real materials the volumetric strain is small compared to the shear strain
under loading conditions which are normally encountered. As a first approxi-
mation such materials may be regarded as incompressible.

For an incompressible linearly elastic solid, tr E = 0. Hence the strain
energy function (5.1) for an incompressible transversely isotropic material may
be written as

W=upurtr E2 + 2(uy, — uT)a.Ez.a +1/28(a.E.a)* — ptrE, (8.1)
where p is a Lagrangian multiplier. From (5.2), the stress is

T=2urE+2(u, —pur)(@®E.a+a.E®a)+p(a.Ea)a®a — pl.
(8.2)

The mechanical effect of the kinematic constraint of incompressibility is to
produce a reaction in the form of the arbitrary pressure p.
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In a fibre-reinforced material which is constructed by reinforcing a rela-
tively soft matrix material by strong stiff fibres, the resistance to deformation by
extension in a fibre-direction may greatly exceed the resistance to other deform-
ation modes. As a first approximation such a material may be regarded as
inextensible in the fibre-direction. For small deformations, the condition for
inextensibility in the direction of a is a.E.a = 0. In this case the strain-energy
function (5.1) reduces to

W =1/2\trE)* + pp trE> + 2(uy, — uy)a.E>.a+ Ta.E.a, (8.3)
where T is a Lagrangian multiplier. Then, from (5.2),

T=MtrE+2uE+2(u —ur)@®Ea+aE®a)+Ta®a. (g4g)

The mechanical effect of the inextensibility constraint is a reaction in the form
of an arbitrary tension T in the direction of inextensibility. If the material is
incompressible and also inextensible in the direction a, the constitutive equation
(5.3) reduces to

T=2urE+2(u, —ur)(a®Ea+aE®a) —pl+Ta®a. (8.5)

Corresponding results are readily obtained for an orthotropic material. For
an incompressible material, (5.5) reduces to

T=(8,a.E.a+p;b.Eb)a®a+ (f;a.E.a+(3,b.Eb)b®D
+2uE+2u,(a®E.a+aE®a)+2u,(bOEb+b.E®b) —pI. (8.6)

For a material which is inextensible in the orthogonal directions a and b, (5.5)
reduces to

T=NMuE+2uE+2u,(a®E.a+a.E®a)
+2u,(b®Eb+b.E®b)+ T,a®a+ T,b®b, (8.7)

where T, and Ty, are arbitrary tensions in the directions a and b. For a material
which in incompressible and also inextensible in the directions a and b, (5.5)
becomes

T=2uE+2u,(a®Ea+aE®a)+2u,(b®E.b+b.E®D)
—pl+T,a®a+T,b®b. (8.38)
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Analogous results hold for finite elastic deformations. The condition for
incompressibility is I; = det C = 1; the condition for inextensibility in the
direction a,, in the reference configuration is I, = a,.C.ap=1. In the case
of transverse isotropy, (6.7) is modified as follows:

(a) Incompressible material (I; = 1)
T=2{W,B-W,B'+[,W,a®a+,Ws(a®B.a +a.B®a)}
—pl. (89)
(b) Material which is inextensible in the directiona (I = 1)
T =21; Y2 {(1,W, + ,W,) I+ W, B —I,W,B™"
+Ws;(a®B.a+a.B®a)l+Ta®a. (8.10)

(c) Material which is incompressible and inextensible in the directiod a I=1,
I,=1)

T=2{W,B-W,B"'+W;(a®B.a+a.B®a)} — pl + Ta®a.(8.11)

For the case of an orthotropic material, (6.9) is modified as follows:

(d) Incompressible material (I; = 1)
T=2{W,B-W,B ' +,W,a®a+I,W,b®b
+I,W;@®B.a+a.B®a)+ W, (b®B.b+bB®b)} —pl. (8.12)

(e) Material which is inextensible in the directionsaandb (I, =1, I, = 1)

T =21;Y2 {(1,W, + LW,)I+W,B—I,W,B™"
+Ws(a®B.a+a.B®a)+W,(b®B.b+BOb)}+T,a®a+T,b®b.
(8.13)
(f) Material which is incompressible and inextensible in the directions a and b
I=1,1,=1,1,=1)
T=2{W,B-W,B'+W,(a®B.a+B®a)
+W,(b®B.b+b®b)} — pl + T,a®a+T,b®b.  (8.14)
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For an orthotropic material which is inextensible in two non-orthogonal
directions d and e, it is more convenient to express W as a function of the
invariants (4.10), and note that the inextensibility conditions take the forms
d.C.d = 1 and e.C.e = 1. This theory is described in Spencer [15], but the consti-
tutive equations derived in [15] contain some redundant terms.

9. Kinematic constraints. Plasticity

The stress in a material subject to kinematic constraints can be divided into two
parts. Thus
+ Ry, “.1)

T=S+R, T;=S

ij ij

where R is the reaction stress, and S is the extra-stress. The extra-stress is
determined by constitutive equations; the reaction stress is arbitrary and is
determined by equations of motion or equilibrium and boundary conditions.
For an incompressible material R = — pl ; without loss of generality the hydro-
static part of S may be absorbed into pl, and we may assume tr § = 0, so that
in this case S becomes the deviatoric stress. Similarly, for a material which is
incompressible and inextensible in the direction a, we have

R=—-pl+Ta®a, 9.2)
and without loss of generality it may be assumed that

trS=0, aSa=0. 9.3)
It follows from (9.1), (9.2) and (9.3) that in this case

S=T—%(trT—a.T.a)I—%(trT—3a.T.a)a®a. .4

For a material which is incompressible and inextensible in the two ortho-
gonal directions a and b, we have

R=—pI+T,a®a+T,b®b, 9.5)
and it may be assumed that

trS=0, aSa=0, bSb=0. 9.6)
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In this case S takes the form
S=T—(r T—aTa—bTb)I+(trT—2aTa—bTb)a®a
+ (rT—aTa—2b.T.b)b ®b. (9.7)

For most metals it is observed that plastic yielding is, to a good approxi-
mation, independent of the hydrostatic pressure. The yield function F(T;;) can
then be expressed as a function of the components of the deviatoric stress
T — 1/3 Itr T. In the case of a transversely isotropic material, the set of inva-
riants (7.2) may then be replaced by

¥, =1/2tr 8%, Jy=1/3trS3, J,=aSa, Jy=1/2a8%a, (9.8)

and in the case of an orthotropic material, (7.3) may be replaced by
3,,35,0,,35,Jg =bSb, J;=0bS%b (9.9)

where S=T — 1/31trT.

If a plastic material is inextensible in one or more directions, it is to be
expected that yielding will not be affected by arbitrary tensions in those direc-
tions. Hence the yield function may be expressed as a function of the extra-
stress, rather than of the total stress. Thus in the case of a transversely isotropic
material which is inextensible in the direction a, the set (9.8) may be replaced

bY gy —12us?, Ji=13uS?, I =1/2a8a, (9.10)

where now S is given by (9.4). In the case of an orthotropic material which is
inextensible in the directions a and b, then S is given by (9.7), and the set
(9.9) may be replaced by

1y =12t 8%, I = 13683, I =1/2a8%a, J7' =1/2bSDb.
(9.11)

Similar arguments can be applied in the case of an orthotropic plastic
material which is inextensible in two non-orthogonal directions d and e. This
case was discussed in [15].

If the associated flow rule (7.4) is adopted, then the plastic strain-rate DP
is obtained from the appropriate form for F(T};).

The current yield stress k which was introduced in (7.1) depends on the
deformation history. It is sometimes assumed that k depends on the plastic
work Wp, where

W =T

. DF. (9.12)

ij “ij
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If we denote ®(T;) = {F (Tij)}‘/z, then ®(T;;) is homogeneous of degree one,
and (9.4) gives

where € is a factor of proportionality. Hence
v, = €T; 0®/dT;; = €B(T;;) = ek (W,). 9.14)

If we choose € =0 when W, =0, and k is an increasing function of Wp,
then (9.14) establishes a correspondence between e and W,, and k may
equally be regarded as a function of e. In effect, € is an equivalent plastic strain.
To obtain an explicit expression for €, it is necessary to solve (9.13) for T;; in
terms of Dﬁ and €, and then substituting for T;; in the yield condition gives €
as a function of Df. As a simple example, a plausible generalization of von
Mises’ yield condition for a transversely isotropic material which is inextensible
in the direction a is

Ty + oIy =k, (9.15)
where c is constant. Then the flow rule gives

P

ij 5;

e ,a1" 8y
( 24—
aT; ATy

€
) =’2_1'(’ {Sll + 1/2 C(aiapspj + ajapspi)},

and hence it follows that

.2 "
€ " ' € ’
DD}, = pres {215 + c(c + 4 J{}, aDRDR = (1 +1/2¢)* 1,
(9.16)
Therefore, from (9.15) and (9.16),
'2_2DPDP___40_. DP DP (9.17
e =2D4D5i — -7 %% Pk Dy 17)

and this determines the ‘equivalent strain-rate’ € for any given deformation. To
assume that k is a function of € is equivalent to assuming that k is a function of

W,.
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RESUME

(Sur la formulation des équations constitutives pour les solides anisotropes)

Nous passons d’abord en revue les problémes algébriques de la détermi-
nation des invariants, dans un groupe de transformations orthogonales, d’un
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certain nombre de vecteurs et de tenseurs cartésiens du second ordre. On montre
ensuite comment la solution de ce probléme algébrique peut étre appliquée pour
la formulation des équations constitutives des matériaux anisotropes, et en
particulier des matériaux orthotropes et orthotropes de révolution. Cette
approche est illustrée par la formulation des équations constitutives en €lasticité
linéaire, en élasticité finie et en plasticité. Une attention particuliére est réservée
pour les matériaux renforcés par des fibres. L’effet des restrictions cinématiques
de lincompressibilité et de I'inextensibilité dans certaines directions est
également discuté.
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1. Introduction

We are concerned with the problem of determining the general form of the
tensor-valued polynomial expression

T; =& i, Biy.ip Ciplig,.) (1.1

1...ip
which is invariant under a group of transformations {A} = {A,,A,,..}.
Thus the function ®; ; appearing in (1.1) must satisfy

Ai]j]... Aln]n i1 ...0n (Bll p’ Cil...iq,...) =

(A A, ) 1.2)

iyig... Pipip le...jp’A' j Ay, G

ig...ip ipig... igiq “i1---dgs---
for all A = ||A;;ll belonging to {A}. We are also concerned with determining

the general form of expressions such as

Ti1i2 = Cil ... ig Bi3i4i5 + Ci] ...ig Bi3i4i5 Bi6i7i8 (13)

which are invariant under a group of transformations {A}. This is of course
a special case of (1.1). The restrictions imposed on the property tensors
Ci,...ig and C; ;o by the requirement that (1.3) be invariant under {A}
are that

Ai1j1 Aisjs C_il s T Cil ...ig? Ailjl Aisjs le ...ig = Cil...ig (14)
must hold for all A belonging to {A}. Tensors C; iy and C ig which
satisfy (1.4) for all A belonging to {A} are said to be mvanant under {A}.
There is an extensive literature devoted to the determination of the general
expressions for tensors which are invariant under the various crystallographic
groups. See, for example, references [1],..., [3]. In principle, the problem of
determining the form of (1.3) is solved once the general forms of the tensors
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Ci, ..., ... are known. In practice, difficulties frequently arise. For example,
let us consider the problem of determining the general form of
Tij = Cijk...q Bka Bnpq’ Tij ij Buk B; ikj (1'5)

which is invariant under the three-dimensional orthogonal group O,. The
general eighth order tensor which is invariant under O is expressible as

Ciy..ig = @1 8iiy Bigig Bigig Bigig + @844, 8i3ig 85, Bigigt - (1.6)
where the right hand side of (1.6) denotes a linear combination of the
105 distinct isomers of the tensor §; igi 45 ,7, Only 91 of these
isomers are linearly independent. Exp]hc1t expresswns ?‘or the 91 linearly
independent 8th order tensors invariant under O5 are given by Kearsley and
Fong [4]. If we employ the results of [4] and substitute the general expression
for C;, ...ig in (1.5), we obtain 91 terms. However, only 15 of these terms
are linearly independent and one must solve a tedious algebraic problem in
order to obtain the appropriate expression. It is preferable to proceed as follows.
We set

T, =TP+ 71, 1 = 3 Takdy, Tg =Ty - Ty

ij ij » ij 3

1 2 3 4)
By, = B + B + BYL + B,

Bfﬁi 5 (Biajk + Bi‘sik + Bk‘sij) » Bi= Blpp Bpip + Bppi ’
o (1.7)
Bl]k 6 (2C18,|k - C,alk —_ Ckau) s Cl = Bipp —_ Bppi s
3 2
Bf,ll 3 (2Bjjx — Bjki — Byyj) — BZ
4 1 1
B{Y = € Bijic + Bjic + Byji + Byyj + By + Byy) — B{Y .
The tensors ijllz ) (,f,)( have 3, 3, 5 and 7 independent components res-
pectively. We may then write (1.5)as
T + TP = ey g B+ + Big) Bl + -+ + Blpy)  (1.9)

and consider the 20 separate problems

T = e o BEM BT, (@=12; B,7=1234; <7). (1.9)

npq >
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We may compute the number of linearly independent terms in the expressions
obtained from (1.9) by setting (a,8,v)=(1,1,1), (1,1,2),...,(2,4,4)
and we find that there is just one linearly independent term in 15 cases and
none in the remaining 5 cases. Thus, we have reduced the complicated algebraic
problem of determining the general form of (1.5) which is invariant under
the group O, to 15 essentially trivial problems. The validity of this procedure
is based on the fact that the independent components of the six tensors
Tff) ) 5411 form carrier spaces for irreducible representations of the group
0, " We next show that a variant of this procedure may be effectively employed
to establish the general form of expressions such as (1.3) which are invariant

under any given crystallographic group.

2. Decomposition Procedure

We now consider the problem of determining the form of

T i, = Cifigiy v im Biyeenim (2.1)
which is invariant under a group {A}= {A;,...,Ay}. Let T;,..., T,
and B,,...,B; denote the independent components of T; Looip and
le i respectively. Thus, (2.1) may be written as

T, B,
T=CB, T=|: |, B=|:|. 2.2)
Tp Bq
The requirement of the form (1.2) that
® ® _ ® k)
Ailpl ...Ainpn Tpl...pn - ci1 ceddpigecadm Ajlql Ajmqm Bql N I,
2.3)
must hold forall Ay = || Agjk) || belonging to {A} may be written as

The sets of Np x p matrices S(Ay) and Nq x q matrices R(A;) which define
the transformation properties of T and B respectively are said to form matrix
representations of the group {A}. With (2.2) and (2.4), we see that the p x q
matrix C is subject to the restrictions that

S(AL) C = CR(A}) (2.5
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must hold for k =1,...,N. We may determine matrices Q and P such that
the matrix representations QS(A;) Q"1 and PR(Ak)P_1 , which are said to
be equivalent to the representations S(A;) and R(A), are decomposed into
the direct sum of irreducible representations of {A}. Thus, we have

QS(A) Q' =n,I (A + - F (A,

_1 ) 2.6)

PRAYP ' =mr,(A) + -+ mIE(A)
where the right hand side of (2.6), denotes a block diagonal matrix which
contains n, p, x p, matrices Iy (Ay),..., n,p, x p, matrices (A,) along
the diagonal. We note that there is a finite number r of inequivalent irreducible
matrix representations associated with a given crystallographic group and we
denote these by I (Ay), ..., K (Ay). Therepresentations Ky (Ay), ..., T (Ay)

are said to be of degrees p, , . . ., p, respectively. Let

QT=<,+---+%,, PB=g, + - +§,,

T; = 1u+ +"m > pi=pi1‘i‘"'4‘9imi’ 27
(.) ()
1 Bi1
Ty = By =
() (D)
"1)1 [3J'Pi

where the matrices Q and P are those appearing in (2.6) and where the Tj(ll(),

[3 k are of course linear combinations of the components of T and B respec-
tlvely With (2.2) and (2.4), we have

QT =QCB=QCP 'PB=DPB, D=0QCP !,
(2.8)
QS(A,) Q'D = DPR(A,) P!

where (2.8); must hold for k =1, ..., N. With (2.7), we see that (2.8); may
be written as

11 ir ij ij
12 D ,...,D pl Dll""’Dﬂ'nj
. _ . . . ij_ . .
: - : : : » D7= : :

rl T ij ij
T, D ,...,D B3, Dnil,...,Dnimj

(2.9)
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The matrices Dll'1 , ... are p; x p; matrices and the matrix DY is a plnl X p;m
matrix. With (2.6), (2 8); and (2 9), , we see that the matrices Daﬁ appeanng
in (2.9), are subject to the restrictions that

(A DYy = D¥;my(A)) (2.10)
must hold for k =1,...,N. We may then employ Schur’s lemma [5] which

tells us that the matnces Daﬁ are zero matrices if i # j and are multiples of
the p; x p; identity matrix if i =j. For example,if n; =2,n, =1, m, =2,
m,=1,p, =1,p, =2, wehave

v 4, 2 653
0 (1)
T(ZII) 33 . a4 | B
= [-2--% -IL-—~- ol - (2.11)
Tg2l) | 35, 0 Bi1
| 2
1(122) 10, a ﬂ()

Thus, the problem of determining the form of T = CB which is invariant under
{A} may be replaced by the equivalent problem of determining the form of
QT = DPB which is invariant under {A}. However, appropriate choice of Q
and P renders this problem trivial and essentially reduces the problem of
determining the form of T = CB to the problem of determining the decompo-
sition of T and B into the sum of quantities whose transformation properties
under {A} are defined by the irreducible representations (A, ..., IL(A).
We plan to employ this technique as the basis of a computer program which
will generate explicit expressions for scalar-valued and tensor-valued functions
of a number of vectors and second-order tensors which are invariant under
any given crystallographic group. This work is in progress and we foresee no
essential difficulties. For a more detailed discussion of the above notions,
see references [6], ...,[10].

3. The General Case

The decomposition procedure employed in § 2 may be employed effectively
when we seek to determine the general form of the polynomial expression

o=2®B; iy Gy, ) (ERY

which is invariant under a crystallographic group {A}. We note that the
problem of determining the form of the function

Ty = iy By i Gy

)
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which is invariant under {A} may be reduced to the problem of deter-
mining the form of a scalar-valued function <I>*(Bil_' i, C

iy oerigae Til...in)
which is invariant under {A} where ®* is linear in

iy ig There is conse-

quently no loss in generality in restricting consideration to the case (3.1).
Let S(A,), R(Ay), ... denote the representations of {A} which define the
transformation properties under {A} of the column matrices B, C, ... whose
entries are the independent component B,,...,B,, C;,...,Cq,... of

b p b
the tensors Bil‘ g C _. We may then express (3.1) as

ig..igye
® = &(B,C,...) (3.2)
where the polynomial function ® is subject to the restriction that
$B,C,..)=®SA)B, R(A)C,..) (3.3)
for all A, belonging to {A}. Let us choose matrices Q, P so that
QSAYQ " =0, G AY + - Fn, LAY,
PRAYP '=m (A0 + -+ mI(AY),...,
QB =B, + By F o Byt

PC =:Bl,nl+1 +--- +Bl,n1+ml + e +Br,nr+1 +oee +Br,nr+mr,...

(3.4)

where the transformation properties under {A} of the B;; . B, are defined
by the irreducible representations I (Ay), ..., I;(Ay) respectively. With
(3.4), we see that (3.2) is expressible in the form

S=0%@; . By (=12,...5..5§=12,..) (3.5)
where the function ®* is subject to the restrictions that
D* (g5, Bry) = P (AY) By, ..., T(AQB;) (3.6)

must hold for all A, belonging to {A}. We observe that the problem of
determining the form of ®(B,C) and ¥(D,E,F) which are invariant under
{A}, when translated into the form (3.6), will differ only in the number of
quantities {3;;  [3; which appear as arguments of the function ®*. Thus,
if we solve (3.6) for the case where i=1,...,k,;,....,j=1, ..., k, where
Ky,..., k; are arbitrary, we have then solved the most general problem which
may arise. In [11], [12], Kiral, Smith and Smith have obtained results of
this generality for 27 of the 32 crystal classes. Work is in progress to extend
these results to the remaining crystal classes (the 5 cubic crystal classes).
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4. Syzygies

We observe that the problem of determining the general for of ®(B,C,...)
where & is a scalar-valued polynomial function of the components of B,C, ...
which is invariant under {A} includes the problems considered in §2 such
as (2.1) as a special case. Let us consider the problem of determining the general
expression for a polynomial scalar-valued function of a single tensor B = ||B;;l|
which is invariant under {A}. Let I, I,, I; be polynomial functions which
are of degrees 1, 2, 3 respectively in B and which are invariant under {A} such
that any polynomial function of B which is invariant under {A} is expressible
as a polynomial in the I,, I,, I;. The invariants I,, I,, I5 are referred to as the
elements of an integrity basis for functions of B which are invariant under
{A}. Thus, we have

®(B) = ¢y + ¢;1; + ¢, 13 + 4,1, + ¢, I3 + d,1,1, +egl,
4.1)
et +d, B, 4 e, B+ £, 1 + ...

If we consider the problem of determining the general form of the functions

Cij Bij» Cijce Bij Bres Cijkemn BijBreBma,... 4.2)
which are invariant under {A}, we may of course proceed by setting
¢;B.,=¢,1.,...,
bt (4.3)

Cijkemnpq Bij Bke Bmn Bpq = Call + dal1 1, + eg13 + f41, 15, ...
provided that all of the terms of degree n in B appearing on the right hand side
of (4.1) are linearly independent. In general, we are not sure that this is the case.
For example, it might be the case that I,I; = I%. Such a relationship is referred
to as a syzygy. The problem of determining all of the syzygies which relate the
elements I, I,,I5,... of an integrity basis is one of the main problems of the
theory of invariants. Solution of this problem would enable us to eliminate all of
the redundant terms appearing in an expression such as (4.1) and we would then
be able to read off from (4.1) the general expression for

Ciy...ipn Bijiy... B
for any n. In references [13], [14], [15], we have considered the problem of
eliminating all redundant terms from the general expressions for scalar-valued
and tensor-valued polynomial functions which are invariant under a given
group {A}.

i2n—1i2n
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RESUME

(Sur les expressions constitutives anisotropes)

Nous discutons du probléme de la détermination de la forme générale
d’une fonction tensorielle polynomiale T = ®(B,C,...) d’un certain nombre de
tenseurs B,C, ..., lorsqu’elle est invariante dans un groupe {A}.
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1. Introduction

In the analysis of response of anisotropic media there exists a general problem
about the material symmetry restrictions imposed on the constitutive equa-
tions. Numerous studies on this question have been carried out (cf. the
survey [18]). However, these studies have been based on the assumption that
the tensor relations involved are polynomial (or that they could be approxi-
mated by polynomials). According to the apt remark of Pipkin and Wineman
[8], this assumption ‘is a matter of mathematical convenience; it seems some-
what foreign to a discussion of material symmetry’.

The present work is devoted to an analysis of the symmetry restrictions
imposed on the tensor function ¥ of arbitrary type. No proofs are given here,
for brevity of this note. We put no requirements on regularity properties of
3. But unlike [8], [21], we do not rely on the known polynomial results in
order to extend these to a more general class of functions.

We begin our study by introducing the sets of anisotropic tensors
%(G) and tensor functions $(G) the symmetry groups of which contain an
orthogonal subgroup G (Sec. 2). The orthogonal subgroups G are described
by the so-<alled determining tensors [4], [5], i.e. by tensors with a symmetry
group coinciding with G. The fact that we deal only with the tensor repre-
sentations of the orthogonal group automatically restricts the class of sub-
groups which we are interested in when describing the sets ¥ (G) and $(G):
this is the class consisting of those groups which can be determined by tensors
(Sec. 3). If a subgroup G is determined by a tensor X, it turns out that the sets
of anisotropic tensors % (G) consist of tensors which could be constructed from
X, using the invariant tensor operations; the values & (T) of the anisotropic
functions ¥ € $(G) are constructed in the same manner from the tensor-
argument T and the determining tensor X (Sec. 4). The latter result leads to the
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so-called Canonical Form of the tensor functions with a given group of sym-
metry (Theorem 4.2). The Canonical Form reduces the investigation of the ani-
sotropic tensor functions to two basic problems: 1) the construction of a tensor
basis (i.e. a basic system of form-invariant tensors) and 2) the construction of
a complete system of scalar invariants. Some facts concerning the tensor bases
are discussed in Sec. 5. The concept of a complete system of scalar invariants is
considered in Sec. 6; it is emphasized there that the completeness depends only
on the requirements regarding the type of polynomiality, smoothness, etc., put
on the tensor functions. The relationship between the construction of a
tensor basis and that of a complete system of scalar invariants is discussed
in Sec. 7.

2. Symmetry group of tensors and tensor functions

Let E be a three-dimensional Euclidean space over the field R of the real
numbers and let

R,E,E®E,...,®F,... (2.1)

be the tensor powers of E, so that B(E) = U ®E is the set of all the Carte-
=0

sian tensors over E (R is treated as the ‘zeroth’ tensor power of E). The space
® E of p-th order tensors is generated by the polyads x, ® x, ...®xp,

ilie. by the tensor products of the vectors x,,...,x, €E (hereafter we omit
the sign of tensor product of vectors) [1]. Viewing the second-order tensors
as linear transformations of E, we can associate with any A EE ® E a linear
transformation AP € ® E of the space ® E, which acts on the polyads

according to the formula
AP X %y X (Ax)) (Ax,y) ... (AXy),

where x;, €E, i=1,2,...,p, and the dot denotes the ‘semiscalar’ product,
eg. (A.x), =A,,x™. The tensor AP =® A is the pth tensor power
of the tensor ASE®E. P

As usual, we denote by O(E)CE ® E the orthogonal group of the
space E, so O(E)={UEE®E|U.U* =1}, with U* being the tensor
conjugated to U and I the unit tensor.

We call % :V;—> V, a tensor function over E if V; and V, are
certain Cartesian products of a finite number of tensor powers (2.1). For
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simplicity we restrict our attention to the tensor functions of the particular
type
5’37:®E——><§>E, p,q>0, 2.2)
p .

though all the considerations and results given below are, mutatis mutandis,
valid in the general case as well.

We connect with every tensor function (2.2) its symmetry group
G4z C O(E). This is the group which consists of all U€ O(E) that ‘commute’
with &, ie.

G, = {(UEO(E) | H(UP(T)) = UX(S(T)), VTEDE] (23)

The tensor function is called isotropic, if G = O(E). If G is a subgroup
of O(E) then & is called anisotropic.

In the case of a linear function &% we have % (T)=F.T, with a
tensor FEQ®E, s=p+q (the boldface dot means contraction with res-
pect to p pairs of indices). Then (2.3) reduces to the familiar definition of
the symmetry group

G = {UEO(E) | UF)=F} , Q2.4)

for the tensor F € @ E.
As a simple consequence of (2.3) and (2.4) we obtain the useful relation

GrNGs CGyery, VTEDE, 2.5)

between the symmetry groups of the argument and the value for a tensor
function &. -

Let G CO(E) be an orthogonal subgroup. In continuum mechanics
applications, the basic problem concerns the description of the set

SG)= {F|GC Gy} 2.6)

consisting of tensor functions &, each of which has the transformations
UEG as symmetry elements. In the terminology adopted, the elements
of 8(G) are called form-invariant tensors for the group G [18], or tensor
concomitants for G [2], [3]. For brevity we shall call them G-nvariants or
invariants, if the group G is fixed.

If we assume that the tensor functions & are linear, then the set (2.6)
reduces to the set

B(G) = {TEB(E) [GC G }= {TEBE) |UP(T) =T, VUEG} (27)
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of all the Cartesian tensors over E which do not change under the transfor-
mation UP, UEG. We have the decomposition ®(G) = Y, [.(G), where
n=

I,(G) is the linear space of all G-invariant tensors of order n, n=0,1,....
3. Determining tensors

We introduce the class & of orthogonal subgroups each of which is a symmetry
group for a certain tensor over E,ie.

@= {GCO(E) | IXEBV(E). G =Gy} 3.1

LEMMA 3.1.: The class & consists of all finite and texture! ortho-
gonal subgroups.

LEMMA 32.: Let G, be an orthogonal subgroup which does not
belong to the class §, then

8(Gy) = 8(Gx), BV(Gy) =BV(Gx), (32)

where G, = GQ G’ GE€ @, is the smallest group in § which contains
0

G, asa subgroup.

Hence, analyzing the structure of the sets $(G) of G-nvariants, we
can restrict our attention to the subgroups GE §.

Let GE §. Following Lokhin and Sedov [S], we call X EBV(E) the
determining tensor for G, if G = Gx. Equivalently, the subgroups GE€ §
could also be determined by a number of tensors X,,..., X, so that
G= le Nn...N Gxn . The point is that, within the accuracy of an inversion,
Gx = le n...N Gxn, where the tensor X is the polyad X=X, ® ... ®X;
the inversion can be eliminated by adding the alternating tensor as a tensor
multiplier into the polyad X; ® ... ® X .

Obviously, the class & is wide enough for continuum mechanics appli-
cations, because it includes all 32 symmetry groups of crystals and the seven
texture subgroups; the table of the determining tensors for these 39 subgroups
is given in [S].

It is important to note that the groups G € § are compact. Moreover,
the assumption that the group G is determined by a tensor presents a set of
polynomial conditions; consequently, the groups G& § are algebraic and

1 An orthogonal subgroup is a texture, if it contains all rotations about a fixed
axis.
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therefore, according to a known result, they are Lie groups. But in our case
this is clear from their description given by the Lemma 3.1.

4. Description of the sets of anisotropic tensors and tensor functions

Let GE § be a certain orthogonal subgroup with the determining tensor
X, so that G = Gy . We consider the sets

LXCOE, IX)= U LX)CBE), @.)

consisting, respectively, of the p-th order tensors and of the tensors over
E, which can be constructed from X using the invariant tensor operations,
ie. forming linear combinations, tensor products, contractions and isomers 1.

The invariant tensor operations are polynomial isotropic tensor func-
tions, so, according to (2.5), Gx C Gy for each TEI(X). Hence, in the
notation (2.7) and (4.1), we have that I(X)C®(G). It turns out, however,
that these two sets coincide:

THEOREM 4.1 : If GEG and G = Gy, then
I(X) = B(G), L(X)= Ip(G), p=0,1,.... 4.2)

In other words, every tensor T with a symmetry group Gy 5 G = Gx can
be constructed from X, using only the invariant tensor operations.

Theorem 4.1 has been announced by Lokhin [4] for the class of symmetry
groups of crystals and textures.

If G= O(E), Theorem 4.1 is well.known (see, for example, [3]); in
this case it states that every isotropic tensor is a linear combination of isomers
of the tensor I®I® ...® 1, because the unit second-order tensor I deter-
mines the full orthogonal group,ie. G; = O(E).

THEOREM 42 : If G&€ §, G = Gy, then every tensor function
g € §(G) of the type (2.2) can be represented in the so-called Canonical
Form:

M
F(T) = ) £(T)P(T), TE®E, (4.3)

i=1

1 A isanisomer of B, if there exists a permutation s such that

1112...lp 15(1)‘3(2)"'18(])) “alll2'"lp” I 1112...1p“ p
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where P, € $(G) are polynomial tensor functions such that for every
TEQE the set of their values P, (T),...,Py(T) contains a basis for the

P
space Iq(X,T), generated by the tensors X and T by means of the inva-
riant tensor operations, and where f; are scalar-valued G-invariants.

A stronger result was proposed in [7], where it was shown that the
tensor functions P, could be chosen so that the scalar-valued functions
f, in (4.3) are polynomial, provided the function & is polynomial. In this
case (4.3) is called the Polynomial Canonical Form. It is clear that every
Polynomial Canonical Form is also a Canonical Form [8], [21], but the
converse is not generally valid.

It turns out that the Polynomial Canonical Forms are smooth in the

sense of the following theorem.

THEOREM 4.3 : Let (4.3) be the Polynomial Canonical Form for the
tensor functions % € $(G). Then a tensor function &% €$§(G) is smooth,
ie. FE€C”, if and only if the scalarvalued G-invariants f, to fy in the
representation (4.3) for & are also smooth.

However, in the case of a tensor function FEC™, m <o, the coef-
ficients f; are in C", and m #n in general. The problem of relating m
to n seems to be difficult. To the best of our knowledge the only result
in this direction has been established in [13] (see also [19]), where it has
been shown that an isotropic symmetric second-order tensor function is
continuous if and only if the coefficients f,,f, and f; (there are three
of them in the case as given below; see (5.2)) possess three continuous deri-
vatives,i.. n = m + 3 in the notation just introduced.

The following consequence of Theorems 4.1 and 4.2 is often used
in applications:

THEOREM 4.4 : Every anisotropic tensor function &€ $(G) can
be represented in the form

%(T) = ¥e(T,X), @é4)
where J€ is a certain isotropic tensor function of two tensor arguments
T and X, with X denoting the determining tensor for the group G.

5. Tensor bases

Following Smith and Rivlin [14], we call a tensor basis for the group G every
basis in the linear space Ip(G) of anisotropic p-th order tensors with the given
symmetry group G.
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Theorem 4.1 presents the full description of the space I,(G) of ani-
sotropic tensors. However, it gives non information about the concrete cons-
truction of the tensor bases. Note that a general method and examples of
finding such bases have been proposed in [14], [16].

According to Theorem 4.1, the construction of a tensor basis means
the construction of a basis in the linear space Ip(X)C ® E consisting of

the p-th order tensors which are obtained by applying the invariant tensor
operations to the tensor X, G = Gy. The same problem occurs when
analyzing the G-invariant tensor functions, because the values of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>